skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jigmeddorj, B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A high-statistics \(\beta \)-decay experiment was conducted at the TRIUMF-ISAC facility using the \(8\pi \) \(\gamma \)-ray spectrometer and its ancillary detectors to study the low-spin structure of \(^{98}\)Zr. The analysis of \(\gamma \)–\(\gamma \) and \(e^-\)–\(\gamma \) coincidence data is presented. New measurements of \(\gamma \)-ray branching ratios and mixing ratios are reported for four \(J^{\pi } = 2^+\) states located above 2 MeV excitation energy in \(^{98}\)Zr. Based on these measurements, ratios of \(B\)(E2) values for transitions to lower-lying levels are determined, highlighting the preferential decay paths of these \(2^+\) states. AbstractPublished by the Jagiellonian University2025authors 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. A campaign of Coulomb-excitation experiments to study the electromagnetic structure of \(^{110}\)Cd was performed using beams of \(^{14}\)N, \(^{32}\)S, and \(^{60}\)Ni. The use of various reaction partners enables disentangling the contributions of individual electromagnetic matrix elements involved in the excitation process, yielding, among others, a precise determination of the lifetime of the 2\(^+_2\) state in \(^{110}\)Cd. AbstractPublished by the Jagiellonian University2025authors 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. null (Ed.)
  4. null (Ed.)